eelnico09
22-11-2014, 11:23 AM
At present solid-state drives with extreme capacities are very expensive and even the best of them cannot match high-capacity hard disk drives for nearline storage applications. However, thanks to the evolution of NAND flash memory in general, and 3D vertical NAND (3D V-NAND) in particular, the situation may change soon and SSDs with 10TB or higher capacities will become reality.
Intel Corp. revealed at its Investor Meeting 2014 event this week that in the second half of 2015 its joint venture with Micron Technology – Intel Micron Flash Technologies (IMFT) – will start mass production of 3D vertical NAND flash memory chips with up to 256Gb (multi-level cell, 2-bit-per cell) or 384Gb (triple-level cell, 3-bit-per cell) capacity. 3D V-NAND flash memory chips will feature 32-layer vertically stacked cell arrays that are “interconnected” using four billion through silicon vias (TSVs).
The upcoming 3D NAND chips from Intel and Micron will enable solid-state drives with capacities simply not possible today. According to Rob Crooke, senior vice president and general manager of Intel’s non-volatile memory group, the 3D NAND will enable 10TB and larger solid-state storage solutions in the next two years.
Tampoco se emocionen, al parecer esto es de aqui a 2 años, pero igual, es un avance tremendo.
http://www.kitguru.net/wp-content/uploads/2014/11/intel_3dnand_3d_v_nand_flash_micron_256kb-1024x443.jpg
In a bid to build 4TB Optimus Max solid-state drive earlier this year, SanDisk had to use 64 extremely expensive 64GB (512Gb) eMLC NAND flash memory packages (which integrate four 128Gb eMLC memory chips into one package) that rely on planar NAND flash and are made using thin process technologies. By contrast, Intel’s 256Gb MLC 3D NAND flash memory chip which can hold up to 32GB of data (384Gb/48GB TLC NAND flash) will be made using a mature (i.e., thicker) process technology (Intel does not disclose which one) and will have a “breakthrough” cost. As a result, multi-terabyte solid-state drives will not only become reality, but will not cost several thousands of pounds per unit.
Mr. Crook used a prototype solid-state drive based on the 32-layer 256Gb MLC NAND flash memory to run his presentation at the Investor Meeting 2014, which means that the technology is viable and products on its base are already functional.
At present Samsung Electronics produces 128Gb 24-layer and 32-layer 3D V-NAND MLC NAND memory chips using 42nm process technology. According to Chipworks, “visible” capacity of the 128Gb MLC 3D V-NAND chips is 86Gb, which means that Samsung remains pretty cautious about its multi-layer MLC NAND memory.
Intel’s 3D NAND memory project seems to be far more ambitious than Samsung’s: it will start at 32 layers and 256Gb capacity, which means that Intel’s chips will be more cost-efficient than those from its rival.
Más info en la FUENTE (http://www.kitguru.net/components/memory/anton-shilov/intel-promises-10tb-ssds-thanks-to-3d-v-nand-flash-memory/)
Intel Corp. revealed at its Investor Meeting 2014 event this week that in the second half of 2015 its joint venture with Micron Technology – Intel Micron Flash Technologies (IMFT) – will start mass production of 3D vertical NAND flash memory chips with up to 256Gb (multi-level cell, 2-bit-per cell) or 384Gb (triple-level cell, 3-bit-per cell) capacity. 3D V-NAND flash memory chips will feature 32-layer vertically stacked cell arrays that are “interconnected” using four billion through silicon vias (TSVs).
The upcoming 3D NAND chips from Intel and Micron will enable solid-state drives with capacities simply not possible today. According to Rob Crooke, senior vice president and general manager of Intel’s non-volatile memory group, the 3D NAND will enable 10TB and larger solid-state storage solutions in the next two years.
Tampoco se emocionen, al parecer esto es de aqui a 2 años, pero igual, es un avance tremendo.
http://www.kitguru.net/wp-content/uploads/2014/11/intel_3dnand_3d_v_nand_flash_micron_256kb-1024x443.jpg
In a bid to build 4TB Optimus Max solid-state drive earlier this year, SanDisk had to use 64 extremely expensive 64GB (512Gb) eMLC NAND flash memory packages (which integrate four 128Gb eMLC memory chips into one package) that rely on planar NAND flash and are made using thin process technologies. By contrast, Intel’s 256Gb MLC 3D NAND flash memory chip which can hold up to 32GB of data (384Gb/48GB TLC NAND flash) will be made using a mature (i.e., thicker) process technology (Intel does not disclose which one) and will have a “breakthrough” cost. As a result, multi-terabyte solid-state drives will not only become reality, but will not cost several thousands of pounds per unit.
Mr. Crook used a prototype solid-state drive based on the 32-layer 256Gb MLC NAND flash memory to run his presentation at the Investor Meeting 2014, which means that the technology is viable and products on its base are already functional.
At present Samsung Electronics produces 128Gb 24-layer and 32-layer 3D V-NAND MLC NAND memory chips using 42nm process technology. According to Chipworks, “visible” capacity of the 128Gb MLC 3D V-NAND chips is 86Gb, which means that Samsung remains pretty cautious about its multi-layer MLC NAND memory.
Intel’s 3D NAND memory project seems to be far more ambitious than Samsung’s: it will start at 32 layers and 256Gb capacity, which means that Intel’s chips will be more cost-efficient than those from its rival.
Más info en la FUENTE (http://www.kitguru.net/components/memory/anton-shilov/intel-promises-10tb-ssds-thanks-to-3d-v-nand-flash-memory/)